
Magento 2
Quick Tips

10 QUICK, RANDOM WAYS TO EASIER
MAGENTO 2 DEVELOPMENT

Keeping Magento 2 Admin Settings Organised
Hiding unused settings, grouping similar settings and migrating settings

Magento 2 / Php Versions Matrix
A quick list of the main Magento 2 branches and supported PHP versions

Workflow for Magento 2 Settings
How to work with Magento's configuration files: app/etc/config.php
and app/etc/env.php

Displaying Complex Error Messages in Magento 2
Options for error message content that require further instructions

Working Faster with bin/magento
Tips to speed up working with the bin/magento command

Working with Warden
Using the new Warden command line tool by David Alger to aid with Docker
based M2 development

Upgrading a Scaffolded PWA Studio Project
Upgrading a scaffolded PWA project can be tricky - but it can be made easier

CONTENTS
10 Random Ways to Easier Magento 2 Development

Magento 2 Handling of Order Timezone
How to translate the order date to the timezone of the store

Installing Community Language Packs
How to use the Magento 2 language packs found on Crowdin

1
2
3
4
5
6
7
8
9

10 Switching to the Unified Magento Coding Standard
How to get started with the Magento 2 Coding Standard

WWW.FOOMAN.COM

https://fooman.com/blog/keeping-magento-2-admin-settings-organised.html
https://fooman.com/blog/magento-2-php-versions-matrix.html
https://fooman.com/blog/workflow-for-magento-2-settings.html
https://fooman.com/blog/working-with-warden.html
https://fooman.com/blog/upgrading-pwa-studio.html
https://fooman.com/blog/upgrading-pwa-studio.html
https://fooman.com/blog/upgrading-pwa-studio.html
https://crowdin.com/project/magento-2.
https://github.com/magento/magento-coding-standard

Hide Unused Settings

There are a few things that come included in Magento 2 which help in keeping your admin
settings easy to use.

First - it's always a good idea to remove as many settings as possible.
This obviously needs to be weighed up with the need to make your module customisable. One
thing which helps is to hide settings which don't have any impact with the current
configuration. In other words, if a certain setting only makes sense when another specific
setting is set to a particular value, then we can hide it. Magento offers this out of the box using
the <depends> node.

Keeping Magento 2 Admin
Settings Organised

WWW.FOOMAN.COM

<!-- etc/adminhtml/system.xml-->
<field id="exportwithstatus" translate="label" sortOrder="61" type="multiselect"
showInDefault="1"
 showInWebsite="1" showInStore="1">
 <label>Export Orders with Status</label>
 <source_model>Fooman\Connect\Model\System\OrderStatusOptions</source_model>
 <depends>
 <field id="exportmode">order</field>
 </depends>

You can even do something like:

<!-- etc/adminhtml/system.xml-->
<field id="paypalrefundbankaccount" translate="label" sortOrder="425" type="select"
showInDefault="1"
 showInWebsite="1" showInStore="1">
 <label>Bank Account for Paypal Refunds</label>
 <source_model>Fooman\Connect\Model\System\BankAccountOptions</source_model>
 <depends>
 <field id="xerostatus">AUTHORISED</field>
 <field id="cashrefund">1</field>
 </depends>

This will only show the above setting if the two other settings (xerostatus and cashrefund) have
been set to a certain value:

https://fooman.com/blog/keeping-magento-2-admin-settings-organised.html

Group Similar Settings
With Magento 2 you can add one extra layer to group similar settings together, compared to
Magento 1:

To use it, nest an additional level of <group> nodes and Magento will take care of the
open/shut toggles:

<!-- etc/adminhtml/system.xml-->
<system>
 <section id="sales_pdf">
 <group id="all" translate="label" type="text" sortOrder="10" showInDefault="1"
showInWebsite="1"
 showInStore="1">
 <label>Common Pdf Settings</label>
 <group id="page" translate="label" type="text" sortOrder="100"
showInDefault="1" showInWebsite="1"
 showInStore="1" canRestore="1">
 <label>Page Settings</label>
 <field id="allpagesize" translate="label" type="select" sortOrder="100"
showInDefault="1"
 showInWebsite="0" showInStore="0">
 <label>Page Size</label>

WWW.FOOMAN.COM

Migrating Settings
One trick to keep in mind is - as your module develops, your settings likely evolve over time as
well. This could lead to the need to re-organise your settings and shift them around to a new
group to keep them easy to use. Without any further action on your part this could
unfortunately mean that your existing users would either need to reconfigure the extension or
you would need to write some upgrade data script that migrates your settings to the new
path. Fortunately there is a third option which makes this super easy:

<!-- etc/adminhtml/system.xml-->
<field id="displayboth" translate="label" type="select" sortOrder="600"
showInDefault="1"
 showInWebsite="1" showInStore="1" canRestore="1">
 <label>Display Base and Order Currency</label>
 <source_model>Magento\Config\Model\Config\Source\Yesno</source_model>
 <config_path>sales_pdf/all/displayboth</config_path>

By adding a config_path node with the old path, we have the best of both worlds - an easier to
work with admin area, while still keeping the original settings intact.

WWW.FOOMAN.COM

A quick list containing the first and latest version of the main Magento 2 branches and their
respective supported PHP versions:

Magento 2 / Php Version
Matrix

Magento Version Supported PHP Versions Link to Source

2.0.0 ~5.5.0 | ~5.6.0 | ~7.0.0 composer.json

2.0.18 ~5.5.0 | ~5.6.0 | ~7.0.0 composer.json

2.1.0 ~5.6.0 | 7.0.2 | ~7.0.6 composer.json

2.1.18 ~5.6.5 | 7.0.2 | 7.0.4 | ~7.0.6 | ~7.1.0 composer.json

2.2.0 ~7.0.2 | 7.0.4 | ~7.0.6 | ~7.1.0 composer.json

2.2.11 ~7.0.13 | ~7.1.0 | ~7.2.0 composer.json

2.3.0 ~7.1.3 | ~7.2.0 composer.json

2.3.6-p1 ~7.1.3 | ~7.2.0 | ~7.3.0 composer.json

2.4.0 ~7.3.0 | ~7.4.0 composer.json

2.4.2 ~7.3.0 | ~7.4.0 composer.json

WWW.FOOMAN.COM

https://fooman.com/blog/keeping-magento-2-admin-settings-organised.html
https://github.com/magento/magento2/blob/2.0.0/composer.json
https://github.com/magento/magento2/blob/2.0.18/composer.json
https://github.com/magento/magento2/blob/2.1.0/composer.json
https://github.com/magento/magento2/blob/2.1.18/composer.json
https://github.com/magento/magento2/blob/2.2.0/composer.json
https://github.com/magento/magento2/blob/2.2.11/composer.json
https://github.com/magento/magento2/blob/2.3.0/composer.json
https://github.com/magento/magento2/blob/2.3.6-p1/composer.json
https://github.com/magento/magento2/blob/2.4.0/composer.json
https://github.com/magento/magento2/blob/2.4.2/composer.json

Workflow for Magento 2
Settings

WWW.FOOMAN.COM

 When creating the project we dump all settings with

I found this treasure hidden in the Magento Github repo describing succinctly on how to work
with Magento's configuration files, namely and .
Reposting it here so that I can refer to it back more easily in the future.

In summary is shared across all instances but only
exists individually on each instance. The first is part of your code repository the latter isn't.

Here is Juan Alonso's example of a workflow on a real project:

1.
 That creates the needed settings for scopes and themes but skips system core config data

 2. We also add shared settings needed for PRD and Build environments

app/etc/config.php app/etc/env.php

app/etc/config.php app/etc/env.php

app:config:dump scopes themes

bin/magento config:set --lock-config dev/js/merge_files 1

bin/magento config:set --lock-config dev/css/merge_css_files 1

bin/magento config:set --lock-config dev/static/sign 1

 3. As project evolves, we add a new stores and themes, so we need to update our config.php
 settings.

 4. At the same time, if we ever need to share system settings on all environments, we can
 use the command without needing to dump
 all hundreds of settings into the config.php

bin/magento app:config:dump scopes themes

bin/magento config:set --lock-config

https://github.com/magento/magento2/pull/12410
https://twitter.com/jalogut?lang=en

When an end user has taken an action in any application, it's a good idea to provide the user
feedback on that action.
So for example if the save product button has been clicked in Magento 2 you would expect to
see something like this:

Displaying Complex Error
Messages in Magento 2

WWW.FOOMAN.COM

$this->messageManager->addSuccessMessage(__('All good'));

$this->messageManager->addNoticeMessage(__('Something you should be aware of is'));

$this->messageManager->addWarningMessage(__('This is not so good....'));

$this->messageManager->addErrorMessage(__('This is bad'));

If you are writing custom code for Magento, it's fairly straightforward to add your own
messages to be displayed to the user. Usually you would do this in your own controller code -
the context object provides you with access to the
 as the framework provided
means to do so.

Out of the box the following messages can be used:

\Magento\Framework\Message
\ManagerInterface via $context->getMessageManager()

WWW.FOOMAN.COM

which will then render to the user as:

This is usually all you need in user interaction.

However sometimes you need that little bit more from those messages, for example you
might want to include an URL directly in the message itself.
Your first inclination probably looks similar to mine and you end up doing:

$this->messageManager->addNoticeMessage(__('Before we can start please
configure something here'));

/* @see \Magento\Framework\Message\ManagerInterface */

public function addComplexSuccessMessage($identifier, array $data = [], $group = null);

public function addComplexErrorMessage($identifier, array $data = [], $group = null);

public function addComplexWarningMessage($identifier, array $data = [], $group = null);

public function addComplexNoticeMessage($identifier, array $data = [], $group = null);

Luckily for us there is an inbuilt solution for us to use custom messages. In the
 there is an extra set of methods which all include
Complex in their name:
\Framework\Message\ManagerInterface

\Magento

but we soon find out that all output gets automatically escaped:

<!-- etc/adminhtml/di.xml-->
<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:magento:framework:ObjectManager/etc/config.xsd">
 <type name="Magento\Framework\View\Element\Message\MessageConfigurationsPool">
 <arguments>
 <argument name="configurationsMap" xsi:type="array">
 <item name="foomanExample" xsi:type="array">
 <item name="renderer" xsi:type="const"

>\Magento\Framework\View\Element\Message\Renderer\BlockRenderer::CODE</item>
 <item name="data" xsi:type="array">
 <item name="template" xsi:type="string"

 >Fooman_Example::messages/foomanExample.phtml</item>
 </item>
 </item>
 </argument>
 </arguments>
 </type>
</config>

/* view/adminhtml/templates/messages/foomanExample.phtml */

<a href="<?php echo $block->escapeUrl($block->getData('url'))?>"><?php echo $block->escapeHtml(__('click here first')) ?>

$this->messageManager->addComplexNoticeMessage(

 'foomanExample',

 [

 'url' => $this->_helper->getUrl('to/our/route')

]

);

WWW.FOOMAN.COM

To make use of them we first need to set up our identifier via some di.xml instructions:

The template file could then look like this

and last but not least we need to invoke this message and pass in the URL information as part
of the data array:

And we have our intended end result:

 $block->escapeHtml()
As a quick reminder do not output user input without properly sanitizing the input and
escaping the output. The various methods like and
 are your friends.

$block->escapeX
$block->escapeUrl()

Working Faster with
bin/magento

WWW.FOOMAN.COM

The command is the entry point to working with Magento 2's command line
tasks. Prompted by a couple of recent tweets I thought I quickly write down a couple of tips to
speed up working with it.

First up, depending on how your system is configured, you are either able to use
 directly or you need to type (or even something like
if you have multiple versions of php running at the same time). This gets rather cumbersome
to type out all the time...

Enter command aliases.

You can provide an alias to any command simply by running:

 bin/magento

 bin/magento
 php -f bin/magento php70 -f bin/magento

alias m2='bin/magento'

alias m2='cd /var/www && bin/magento'

(or whatever else command you need to run - see above).

Now instead of typing out all the time we can just type followed by whatever
task we want to execute, so for example . . Read more on aliases for example
here to make this permanent by adding this to your ~/.bashrc file.

We can take this a step further as well. The command only works when executed
from the root directory of your site. We can switch to this folder as part of the aliased
command:

bin/magento m2
m2 cache:clear

bin/magento

Now we can type from anywhere and it will take us to the Magento 2 folder as the first step
and then runs the Magento command.

There is one further improvement we can make. It is important to not mix up different levels of
permissions as that can break things. To avoid the command being run with a
different user to the one owning the file we add an additional safe guard via an if clause:

m2

bin/magento

https://fooman.com/blog/working-faster-with-bin-magento.html
https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias

WWW.FOOMAN.COM

alias m2='cd /var/www && if [`whoami` == `stat -c '%U' bin/magento`]; then bin/magento "$@"; else echo "bin/magento should be run as user `stat -c '%U' bin/magento`";fi'

bin/magento c:c
bin/magentoNext the task arguments after can all be shortened as well. So instead of typing

out you can just use . You can abbreviate any
task like this. However you might come across an error message like:

bin/magento cache:clean

$:/var/www$ bin/magento i:r

[Symfony\Component\Console\Exception\CommandNotFoundException]

Command "i:r" is ambiguous (indexer:reindex, indexer:reset).

in the above case we abbreviated too much and the system can't determine if we wanted to
use indexer:reindex or indexer:reset. So we need to make sure that it can differentiate between
the two by either using or

The alias can be combined with the shortened arguments as well which adds up to quite a few
less characters to type:

$:/var/www$ bin/magento i:rei $:/var/www$ bin/magento i:res

php -f bin/magento cache:clean

m2 c:c

Instead of using abbreviations you can also use command completion instead of typing out
every task you can hit [TAB]. Please see the project here.

https://github.com/yvoronoy/magento2-bash-completion

General Docker Tools

Provides own certificate authority to provide TLS
DNS routing via Traefik
Portainer (nice GUI to see more details into what Docker is doing)
plus a few more items that I haven't looked into further yet like ssh forwarding.

There are lots of different options around to set up your local development environment and
I'd hazard a guess no two development environments are the same. Most of my Magento
development work I do is on a Mac so I have come across Homebrew based set ups, in
combination with or without Valet+ and Docker based approaches. For Docker the most
mature and widely used one is the one by Mark Shust.

Unfortunately for me when I started M2 development none of these were around so I made do
with my own inhouse solution based on Docker. It is fair to say that my set up took a while to
get right and I am still always on the look out to see if there is something I can improve. In
particular one of my requirements is that I am able to run multiple Magento versions in
parallel and I need to be able to start with a freshly installed instance often. This has ruled out a
lot of the approaches that include syncing as the initial sync time takes a while and options
that work better for single instances.

With that preface out of the way I was excited to come across a new command line tool by
David Alger called Warden to aid with Docker based M2 development. The part which
immediately appealed to me was that it has two parts to it.

Warden comes with a set of tools that make working with containers easier:

Working with Warden

WWW.FOOMAN.COM

Project Based Environments
With the first part taking care of general "plumbing" tasks Warden then provides the ability to
spin up specific project based environments. It comes with a pre-installed Magento 2 template
that even smoothes out some of the differences between a Mac vs Linux workflow.

What made it especially appealing for me is that integrating our existing images with 1.) only
required adding a few docker labels and allowed me to retire some of the manual set up I
used for faking DNS entries (dnsmasq) and routing them back to a local container (nginx-
proxy with docker-gen). I then was able to use 2.) in parallel with our own custom extension
focused images.

https://github.com/weprovide/valet-plus
https://sso.teachable.com/secure/320358/users/sign_in?clean_login=true&reset_purchase_session=1
https://warden.dev/

Traefik https://traefik.warden.test/ - shows you which containers are responding to what
domain/port
Portainer https://portainer.warden.test - overview of images and running containers
dnsmasq https://dnsmasq.warden.test/ - if you need to debug DNS or want to change the
dnsmasq config

The following links provide useful information while Warden is running:

From here we can use the included Magento 2 template to provide us with an environment
that comes with php, database, varnish, rabbitmq, redis and mailhog. All we need to get all this
up and running is to run from your project root
folder, followed by to trust the new domain
 and finally . What happens in the background here is
that Warden checks your local configuration in the file and the folder and then
combines it with the included docker-compose templates. You can see the outcome of the
behind the scenes work by running once more to show all the different services
now available via a docker container.

warden sign-certificate foomanexample.test
warden env-init foomanexample magento2

warden env up -d foomanexample.test
.env

docker ps

.warden

How Does It Work?

After following the installation instructions the first command to run is which spins
up the mentioned infrastructure. You can see the newly running containers with

warden up
docker ps:

WWW.FOOMAN.COM

WWW.FOOMAN.COM

If you access https://app.foomanexample.test Warden will provide the DNS entry and then
route this via the Traefik container to the Varnish container, which in turn will talk to the nginx
back-end to provide the requested resource.

If you are on a Mac Warden includes Mutagen.io to sync code changes in and out of the
container. Start it with . I have had to re-start the syncing a few times
(simply re-issue warden sync start) which I am not sure where due to spinning up and down
the images fairly quickly or if waking the laptop from sleep had something to do with it.
During normal operation the sync is super quick and does not get in the way of developing.

For a full example walk through of installing Magento 2 configured to use all the services
included please see the documentation here.

warden sync start

https://app.foomanexample.test/
https://github.com/davidalger/warden/#environment-configuration

 Clone the repository
 Use the scaffold command to create your starting project

When working with PWA Studio you have two ways to set up your project:
1.
2.

When using 1. getting the latest code base is usually just a git pull / merge away. However with
2. this is not as straightforward. Essentially when using a create command, as is common in
the React world, you create a snapshot of the project at the time you run the command and
future updates are your responsibility to integrate.

If for example you started in August 2020 you would have created a project based on PWA
Studio 7.

Upgrading a Scaffolded PWA
Studio Project

WWW.FOOMAN.COM

yarn create @magento/pwa

https://github.com/magento/pwa-studio

WWW.FOOMAN.COM

Before running any the folder content would resemble the package content of
venia-concept here. However this is not 100% accurate as some additional processing is run
from the source to what gets published via npm - see the buildpack script here.

yarn install

create-pwa Downsides

Package Updates

The major downside to using the approach is that once a new version of PWA
Studio gets released how to know what to update? The main areas are:

How do we know for example that PWA Studio 7 ships at version 4.0.0
and version 5.0.0 for PWA Studio 8? At the same time the apollo client was updated from
version 2.x to 3.x And this is not a one off either as, for example, PWA Studio 9 includes the
jump to React 17.

Webpack config changes
The main is also a file that is in your project. Over the time I have been
tracking this project there have been various changes and improvements made to this file.

Service Worker improvements
The service worker which is set up via the code under is also not set in
stone and has seen a number of changes.

create-pwa always uses the latest versions
To my knowledge it is not possible to instruct yarn to use a different version for the create
command to essentially go back in time to easily create a diff between the resulting files.

Lots of diffing
In summary the above issues lead to a few headaches when trying to track the upstream PWA
Studio project to benefit from the improvements made since you started. If you tried to
reconstruct the history of individual files from the source repository I think this becomes
unmanageable.

create-pwa

@magento/venia-ui

webpack.config.js

src/ServiceWorker

The solution

Changes from PWA Studio 7.0.0 to 8.0.0
Changes from PWA Studio 8.0.0 to 9.0.1

To be able to create a proper diff between versions for projects started with is to
re-run the same packaging command the PWA Studio team uses to create the final package.
This is exactly what I have done in our PWA Studio Starter repository for the last 3 PWA Studio
releases.

You can check the changes in the below links here:

or if you are starting a new project you can also clone the repository directly (we also create a
weekly package if you would like to track the upstream progress more closely).

create-pwa

https://github.com/magento/pwa-studio/tree/develop/packages/venia-concept
https://github.com/magento/pwa-studio/blob/develop/packages/venia-concept/_buildpack/create.js
https://github.com/fooman/pwa-studio-starter/compare/v7.0.0...v8.0.0.patch
https://github.com/fooman/pwa-studio-starter/compare/v8.0.0...v9.0.1.patch
https://github.com/fooman/pwa-studio-starter/tree/releases

Magento 2 Handling of Order
Timezone

WWW.FOOMAN.COM

Triggered by a recent discussion on Slack and noticing this latest Pull Request to fix some
timezone handling specific code in the Magento 2 framework (Github PR) it seems to confirm
a long held suspicion that something in the Magento framework timezone handling was not
quite working the way I believe it should (even going back to M1 days). Below is an approach
similar to what I have been using to translate for example the order date to the timezone of
the store. It would be able to handle any Magento model that descends from
 and has and methods.

\Magento
\Framework\DataObject getCreatedAt() getStoreId()

class CreationTimeAtTimezone

 /**
 * @var \Magento\Framework\App\Config\ScopeConfigInterface
 */
 private $scopeConfig;

 public function __construct(
 \Magento\Framework\App\Config\ScopeConfigInterface $scopeConfig
) {
 $this->scopeConfig = $scopeConfig;
 }

 public function getCreatedAtStore(\Magento\Framework\DataObject $object, $format = 'Y-m-d')
 {
 $datetime = \DateTime::createFromFormat('Y-m-d H:i:s', $object->getCreatedAt());
 $timezone = $this->scopeConfig->getValue(
 'general/locale/timezone',
 \Magento\Store\Model\ScopeInterface::SCOPE_STORE,
 $object->getStoreId()

);
 if ($timezone) {
 $storeTime = new \DateTimeZone($timezone);
 $datetime->setTimezone($storeTime);

 }
 return $datetime->format($format);

 }

}

https://github.com/magento/magento2/pull/26701/files#diff-a73798c529c95da088d63e6c49021a90L317
https://github.com/magento/magento2/pull/26701/files#diff-a73798c529c95da088d63e6c49021a90L317

language-de_de
language-en_us
language-es_es
language-fr_fr
language-nl_nl
language-pt_br
language-zh_hans_cn

Magento has always been used around the world with the community providing translations
for different locales.

With Magento 2 this is no different and the translation efforts can be found on Crowdin. What
is less obvious is how do you actually use those translations? When installing Magento 2 the
following language packs are installed out of the box:

For any other languages we are unfortuntately sent on a wild goose chase. Let's say for
example we would like to add Italian. The devdocs for adding a language point us to a
category on Marketplace. To my surprise searching for Italian only brings up a commercial
offering with less than flattering reviews.

Installing Community
Language Packs

WWW.FOOMAN.COM

https://crowdin.com/project/magento-2.
https://docs.magento.com/user-guide/stores/store-language-add.html
https://docs.magento.com/user-guide/stores/store-language-add.html
https://marketplace.magento.com/extensions/content-customizations/translations-localization.html
https://marketplace.magento.com/extensions/content-customizations/translations-localization.html?q=italian

"community-engineering/language-"

Found Them
Fortunately for us Magento's community engineering team is turning the Crowdin
translations into installable translations packs. Those efforts can be seen under this Github
account. And what is even better those packages get in turn published via Packagist.

The complete list can be viewed here.

The package name follows the format

So for our Italian example we would have:

+ strtolower(name of locale)

WWW.FOOMAN.COM

composer require community-engineering/language-it_it

bin/magento cache:clean

And after changing the locale of the admin ui in the admin user's setting we are welcomed
with a dashboard in Italian:

https://github.com/magento-l10n
https://packagist.org/users/community-engineering/

PSR-2 (Magento is part of PHP-FIG after all)
MEQP-2 (Marketplace)
ECG-2 (Expert consulting group)
Standard contained in the Magento 2 code base

When working with Magento 2 depending on where you look there are different coding
standards one might pick to follow:

This is less than ideal and often leads to a situation of "do as we say, not do as we do" (not a big
fan) or using a lowest denominator. Even ExtDN decided to jump into the mix to work out
some workable compromise on the above.

I am pleased to see that Magento took the initiative and has been working on a unified
standard that can be used across the entire Magento ecosystem. These efforts have been led
by Lena Orobei and have resulted in the first releases of the Magento 2 Coding Standard.

There is of course always the danger of standard proliferation when introducing any new
standard but I am confident this has a good chance of retiring all mentioned ones apart from
PSR-2. What makes me hopeful is that any adopted rules are already run against the Magento
2 code base and issues are being identified and addressed as part of the rollout.

Switching to the Unified
Magento Coding Standard

WWW.FOOMAN.COM

https://www.php-fig.org/personnel/#member-projects
https://github.com/magento/magento-coding-standard

Getting Started
So how do we get started? First we need to install the standard, which we can add as a
development requirement to our project

WWW.FOOMAN.COM

composer require magento/magento-coding-standard:* --dev

From there we need to let PhpCodeSniffer (got automatically installed with the above) know
about the new standard:

vendor/bin/phpcs --config-set installed_paths ../../magento/magento-coding-standard/

And from there we can use it against any code directory we want to statically test

vendor/bin/phpcs --standard=Magento2 src

and we will likely see a few things mentioned the first time we run it.

From there we can hopefully work through these to remove them. Also take a look at running
 as that can automate some of the fixes.vendor/bin/phpcbf --standard=Magento2 src

There is More Than 1 Standard
I like to keep my code following PSR-2 as well. As that standard is one of the de-facto
standards in the php world it comes pre-installed with PhpCodeSniffer and we can run it with

vendor/bin/phpcs --standard=PSR2 src

Working with Magento this will likely lead to some rule violations which we can't do much
about (short of changing M2 whole sale, hello M1 legacy).

In these cases code sniffer allows us to add exceptions via annotations or code comments.

WWW.FOOMAN.COM

// phpcs:ignore PSR2.Methods.MethodDeclaration -- Magento 2 core use

public function _toHtml()

{

 if (!$this->getOptions()) {

 $this->setOptions($this->getColumns());

 }

 return parent::_toHtml();

}

We should aim to adhere to the standard first before trying to exclude our code. Not all code is
special and one should be prepared to provide a reason to add such an exception if this comes
up in a code review. Also make the exclusion as specific and as narrow as possible, in other
words you do not need to skip the whole file. If you need to find out the exact rule that
triggered the warning you can run with the phpcs -s flag: vendor/bin/phpcs --standard

=PSR2 src -s.

Automate It
One of the best ways to adopt a coding standard is to enforce it automatically when you check
in any code. When working with git, git hooks are perfect for this. I have recently come across
CaptainHook which makes configuring and sharing these hooks in your repository easier.
Other tools like Grumphp can do the same for you. The aspect that appealed to me to start
using CaptainHook is that I can keep the hook set up manual while I test out how this works
for me before integrating this with Composer for all users as well.

.

composer require --dev captainhook/captainhook

vendor/bin/captainhook configure

Which will take you through a quick questionnaire. Alternatively you can supply a
file in your root folder.

captainhook.json

.

https://github.com/CaptainHookPhp/captainhook
https://github.com/phpro/grumphp/

WWW.FOOMAN.COM

{

 "commit-msg": {

 "enabled": false,

 "actions": []

 },

 "pre-push": {

 "enabled": false,

 "actions": []

 },

 "pre-commit": {

 "enabled": true,

 "actions": [

 {

 "action": "\\CaptainHook\\App\\Hook\\PHP\\Action\\Linting",

 "options": [],

 "conditions": []

 },

 {

 "action": "vendor/bin/phpcs --config-set installed_paths ../../magento/magento-coding-standard/ && vendor/bin/phpcs --standard=Magento2 src",

 "options": [],

 "conditions": []

 },

]

 },

 "prepare-commit-msg": {

 "enabled": false,

 "actions": []

 },

 "post-commit": {

 "enabled": false,

 "actions": []

 },

 "post-merge": {

 "enabled": false,

 "actions": []

 },

 "post-checkout": {

 "enabled": false,

 "actions": []

 }

}

.

Which you can then activate with . From here on out any
attempts to check in code with that fails the php linting or Magento coding
standard will get rejected, requiring you to apply a fix for it.

Changing to use the composer plugin instead will integrate with or
 and automate the hook activation
 .

git commit

composer install

vendor/bin/captainhook install

.

update
composer require --dev captainhook/plugin-composer

The standard is being collaboratively developed on github and you can check out its
progress and underlying discussions here.

https://github.com/magento/magento-coding-standard

Great Magento Developers
Need Great Tools.

For more Magento 2 developer
tips, visit the Fooman blog.

FOOMAN BLOG >

https://fooman.com/blog

